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The change of the diamagnetic shielding constant of a benzene molecule interacting 
with the solid phase surface is calculated. 

It was shown in [1-3] that an estimate of the density of adsorbed water is based on a 
determination of perturbations arising in a dispersion medium at the solid phase boundary 
and on taking account of perturbations of the solid phase -- the deformations of the crystal 
lattices under the action of water and organic compounds. 

The effect of a change in density of a dispersion medium in a system consisting of a 
solid, adsorbed water, and liquid was observed in various structures by a relatively simple 
method [I, 2]. However, for a deeper understanding of the mechanism of this phenomenon it 
is necessary to employ methods of investigation differing in principle from those in [1, 2]. 
One such method is nuclear magnetic resonance (NMR). By using this method the state of 
adsorbed molecules can be investigated by the chemical shift and change of intensity of 
spectral lines. The chemical shift is estimated below. 

In the present article we investigate the effect of the structure of the solid phase 
on the diamagnetic shielding constant of benzene protons. The diamagnetic shielding con- 
stants for a benzene molecule were calculated, and the effect of the solid phase structure 
on the diamagnetic shielding constant of benzene protons was investigated. 

Figure i shows the location of a benzene molecule on the solid phase surface, where 
al = 2.64 Bohr radii is the C-C bond length. 

It follows from [4] that the diamagnetic shielding constant is calculated from the 
expression 

- o o ( 1 )  
~d ~ met2 ~ , 

where the symbol ]O) denotes the ground state of the molecule, and r k is the radius vector 
to the k-th electron in the molecule. 

It is clear from Eq. (i) that to calculate the diamagnetic shielding constant it is 
necessary to know the wave function of the ground state of the benzene molecule. 

By using the method of molecular orbitals expressions were obtained for the molecular 
z-orbita!s and the corresponding energy levels of q-electrons in a benzene molecule. These 
are shown in Table I. The atomic pz-electron wave functions X were calculated by the Slater 
method, which is based on the assumption that the atomic pz-orbitals can be approximated by 
functions of the form Xupz = N2pz exp (--sr/2), where r is the distance to the nucleus of the 
carbon atom. The quantity N2p is chosen from the normalization condition of the function X, 
and is equal to (s5/(32~))I/2; s is the effective nuclear charge, which is equal to 3.25 for 
a carbon atom. 

In the ground state all six pz-electrons of the benzene molecule occupy the three 
lowest energy levels. Taking account of the spin, the spin-orbital wave functions have the 

form ~i(J) = ~i(qi)qi, ~i = uo = (~) is the wave function of the state in which the spin 
0 

quantum number I = +1/2; ~i = 8o = (i) when the quantum number I = --1/2. 
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Location of benzene molecule on 
solid phase surface. 

According to the Pauli principle, only those states occur for which the total electron 
wave function of the atomic system is asymmetr• with respect to the interchange of coordin- 
ates of any two electrons. Therefore, the molecular wave function of benzene corresponding 
to a given electron configuration must be written in the form of a Paull determinant 

~ 2, 3, 4, 5, 6) XF b 

0 0 0 (th~ 1)) (~,(1)) , ( '2~1))  (,2(1)) ( '3(1)/  ( ) 
1 1 1 ~ 0 /1 \11~3(1),,1 

(,,(o 6, )o (, o(o, )o 

(2) 

(*~ (k) i where \ 0 ]k is the spin-orbital wave function of the k-th electron. The subscript k out- 

side the parentheses indicates that the spin function refers to the k-th particle. 

Taking account of (2), Eq. (i) as applied to our problem will have the form 

6 

aa _ _ _  ~o* 1 , ~o d r~ . . .  d r~. 
3m~c 2 I rhl 

Performing the necessary mathematical opera t ions ,  we obta in  the f o l l ow ing  expression fo r  the 
diamagnetic shielding constant of benzene protons: 

9025eZn z �9 , 
a d -  [ 3 J l q - 4 J ~ - - J 3 ] ,  

ao3mecZ5! 

where 

j;_-j" r~ exp(--sr) dr; J * = ;  r~ V"--~- 2 - ~  exp [ -  s (V" a~ + rZ -]- ]/'~)/2] dr; 

* f t'l Ja = ,  vr7------ ~ exp [-- s (V-a~ + r z + V'~)/2] dr; 

J4* = ; 1/r~r 2 exp  I-- s (V-a~ + r ~ + V'~)/21 dr. 
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Schemes of filling energy levels of excited 
states in a benzene molecule. 

The integrals J~, J~, J~, and J~ were evaluated on an ES-I022 computer. The results gave 
Od = 4'59"i0-~. 

In [5-8] both the experimental values of the constants Od and those obtained from data 
of model calculations were between 2.2.10 -4 and 2.9.10 -". 

In investigating the effect of the solid phase structure on the diamagnetic shielding 
constant of benzene protons, we assumed that the benzene molecule is located on the solid 
phase surface, and that the active centers of the solid phase are OH hydroxyl groups~ and the 
molecule interacts with two OH hydroxyl groups at a distance a = 18.87 Bohr radii from the 
nearest carbon atoms (Fig. i). The following feature appears in this interaction: within 
an OH hydroxyl group an oxygen atom, as a consequence of its electronegative character, 
attracts an electron of a hydrogen atom and thus protonates hydrogen. Consequently, a ben- 
zene molecule is in a field produced by protonated hydrogen, and the effect of this external 
field must be considered as a correction or perturbation, where W = --ea/r is the perturbation 
operator. As is clear from [9], the wave function of the ground state of the benzene mole- 
cule in the field produced by protonated hydrogen must be written in the form 

E Wmo o ~ = ~ o +  o---;o ~ 
Eo - -  E,~ 

rn#O 

where the matrix elements of the perturbation operator are given by 

6 
W m o = _ _ 2 e Z E f ~ o  ~. 1 ~ ~  dr6. 

h = l  V a z _L_I r h2 �9 �9 

(3) 

(4) 

The eigenfunctions of the benzene molecule for an unperturbed problem, Just as in the pre- 
ceding case, are written as Pauli determinants, but it is necessary to use schemes 1-8 of Fig. 
2, which shows the possible variants of filling the energy levels (the arrows in Fig. 2 show 
the spin directions). The two upper energy levels need not be considered, since they do not 
make a significant contribution to the wave function calculated by Eq. (3), because of the 
considerable distance between the ground and excited states. The energies of the ground 
state and the excited states of a benzene molecule listed in Table 2 were calculated by using 
schemes 1-8. By using Eq. (4) the following expressions can be derived for the matrix ele- 
ments of the perturbation operator: 

Wlo -- 540 e z [Ja - -  Ja + J2 - -  Jt], W2o = - -  W~o, W3o = O, 
6!ao 

1080 e s 
W~o - -  61 ]/'-4--8 a 0 [J~ -- J3 -~- J l  -- J2], Wso = -- I~o,  Wso = O, 

" 1080 e z 
W7o - -  [J3 - -  Ja ~ J2 - - J t ] ,  W8o : - -  WTo, 

6! 1/-~-ao 

where 

F ~ 

J~ = 1/ a z § r ~ 
exp(  sr) dr; J2 = 

F ~ 
exp [ - -  s ( 1 / ' ~  q- r a -k V-~)/21 dr; g a ~ + /-2 
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TABLE i. Molecular ~-Orbitals and Corresponding Energy Levels 
of ~-Electrons of a Benzene Molecule 

v-Orbital  Energy leve l  Note 

1 

1 

1 % = -f (X~+X~--Z~--Z~) 

1 I ' 

1 % = -~-(Zl--Z~+Z~--ZO 

1 
% =  -~-~(--;{~+Z~--Z~+Z~--Z~+Z~) 

E I = E 2 = ~ + [ ~  

E ~  = E 4  = c~ - -  

E~ = =-- 2[~ 

X-- atomic pz-orbitals 

a- -  ionization potential 
a = 2 ,  56"lO-xz erg 

I - resonance integral 
=--1,408.10 -12 erg 

ga : V a z + rz exp [ -  s ( V  a~ + r z + Vr-~/2]  =dr; 

V r, 
J, = a2 + r2- exp [--  s (V" a~ -t- r2 + V~ ~)/2l dr. 

The calculations gave the following values for the matrix elements of the perturbation 

operator : 

Wlo = 2 , 5 5 . 1 0  -la erg ; W2o == - -  2,55- 10 -ia erg ; Wao : 0; 

W~o -- - -  1,47.10 -la e rg  ; Wso = 1,47-10 -la erg ; W6, = 0; 

Wvo = 2 ,058 .10  -la e~g; Wso = - -  2 ,058 .10  -t3 erg . 

We turn now to gqs. (3) and (4) and show the validity of perturbation theory. We intro- 
duce the notation C m = Wmo/(E~ -- ~), where ~ is the set of energy levels of the benzene 
molecule. The condition for the applicability of perturbation theory, as follows from [9], 
is ICml << I for m # 0. In our case CI =--0.096; Ca = +0.096; C~ = 0.0522; C5 = --0.0522; 
C 7 = --0.04872; C8 = 0.04872. 

Starting from Eqs' (i), (3), and (4), we obtain the following expression for the dia- 
magnetic shielding constant of benzene in the interaction of a molecule with the solid phase 
surface: 

~ V - - ~ - I  1 ~o* o " CI urO*ltro C~ ~i~o,q(o 2e 2 1 I - - T 6  ~ + ~6  ~ 1 - -  6 ~ +  
~d - ~  

Ca urO*uro C5 aTro*a~ro C7 1Tr0*lTr __ C8 1Tf0*lTr0 

+ ~ V  ~ " +  -V-V, ~ "  ~ + -V-67, ~" " ~  - r  ~ ~  ~ + 

C t llr 0* 0 2 0* 0 0* 0 
"J- ~V--~. "r l "26 "-~ CtC2~Y l lI~2 -{- ClkIs 1~s -~- CiC&l~l ~ 4  + 

0* 0 0* 0 0* 0 C2 itt0*lte0 
+ CiC5Y[I ~5 -}- C I C ~ I  ~g7 + CiCsT1 Us + - ~ . ' ~ 2  "r6 + 

r-,2~o*~o t-, t-, ~rO*ur o ~ r, r, ~ro*~ o 
+ q c # v ~  ~ + , ~  ~ ~ + , ~ , ~  ~ -t- , , ~ , ~  2 ~ + 

,., ,,., xico,~y o C~ urO*~Tro + qc~ , r~  ~ + ~ ~ ~ + ~ ~ ~ + 

O* 0 O* 0 2 O* 0 O* 0 "~ CtCla.W4 uff 1 -{- C2C~U~4 liar2 -{- C41IY4 llY4 -~- CtiC51~4 1~5 .-4- 
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TABLE 2. Energies of Ground and Excited States of a 
Benzene Molecule, erg 

Energy o f  ground s ta te  Energy of  exci ted  states 

E ~ 6a @ 8~ = 4,096.10 -12 E~ : -  6a + 6~ = 6,912.10 -~~ 

E2 ~ : 6 ~ + 6 ~  : 6,912.10 -1-0 

E 0 : 6~ -~4~ : 9,728.10 -1-~ 

E 0 -~ 6~ + 6~ = 6,912.10-r2 

E ~ = 6~-[- 6[3 = 6,912.10 -12 

E ~ ~ 6g ~- 4[~ : 9,728.10 -12 

E ~ : 6g -~ 5~ -- 8,320.10 -12 

E ~ = 6~ @ 5[~ = 8,320.10-~2 

o* o o* o C5 To*,~ro p,-,go*go 
§ C~CTT4 TT -+- C~CsT4 Ts § -- 5 ~6 § ~I~5 5 i§ 

F 6~ 

O* 0 p r~ lifO*gO p211fO*llfO , O* 0 "-~ 0.,05T5 T2 -[- t-%USX5 4 -~- " 5 x 5  x 5  -f- 0 5 C 7 T 5  T 7  -~  

r r g o * g o  Cv o* o -~- C2C7T7 T2 -6 + + T7 To + c,C T~ o, o 

0* 0 ~ p ]Tf0*T0 t',2lTr0*/Tf 0 -+- C~C7T7 T 4  ~ ~ 5 ~ 7 1 7  5 ~ ~ 7 1 7  x7 -~ C7C8 TO*TO ~ 

C8 ltf0*Hr0 0* 0 z- ~ T 0 * . r 0  0* 0 
~- ~ .  18 16 ~- CiCsT8 Tl ~- b2%8 8 ~[2 7- C&C8T8 T4 -~ 

0* o 0* 0 . c 2 T o * , ~ o .  +CsCsTs Ts+C~CsT~ TT~- 8 8 ~ ' 8 ] d h  . . -  dr6. 

T h e  c a l c u l a t e d  v a l u e  o f  ~d  i s  9 . 5 5 . 1 0  - 5 .  

Thus, the results obtained show that the nuclear magnetic resonance method can be used 
to estimate the change of structure of dispersion media perturbed by the solid phase surface. 

We have begun experimental studies of the effect of the properties of the solid phase 
surface and adsorbed water on the change of structure of dispersion media by the nuclear 
magnetic resonance method. 

NOTATION 

Od, diamagnetic shielding constant; e, me, electron charge and mass, respectively; c, 
speed of light; Pb ~ benzene wave function; ~ and ~*, eigenfunctions of benzene molecule 
and their conjugates; Wmo , matrix elements of the perturbation operator; E~, energy of the 
ground state of a benzene molecule; E~, energy of the excited states of a benzene molecule; 
co, Bohr radius. 
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An equation for calculating the thermal conductivity of filled polymer composi- 
tions is derived and confirmed experimentally. 

In what follows, we examine the thermophysical properties of concentrated polymer solu- 
tions in hydrocarbon solvents, filled with metallic particles. In view of the high viscosity 
of a gel, sedimentation proceeds extremely slowly and the composition can be viewed as 
homogeneous and isotropic. If the volume concentration of the metal is high, the metallic 
particles form a branching network, encompassing practically the entire volume of the composi- 
tion. In this case, the dispersed system must be viewed as consisting of two interpenetrating 
components: the gel and the metal. The properties of such systems are examined in detail in 
[i]. 

For relatively small volume concentrations of metallic powder, the composition can be 
viewed as consisting of a binding medium (gel) with randomly positioned metallic inclusions 
[I]. The difference between the situations can be easily observed experimentally. In the 
first case, the coefficient of effective thermal conductivity of the composition depends on 
the thermal conductivity of the metal. In the second, in view of the fact that the coef- 
ficients of thermal conductivity of metals are several orders of magnitude greater than the 
coefficient of thermal conductivity of a gel, the effective thermal conductivity depends on 
the nature of the packing, i.e., on the volume content, dispersion, etc., but not on the 
nature of the metal. 

Quite often, the powder particles are covered by an oxide film, whose thermal conductiv- 
ity in most cases exceeds the thermal conductivity of the gel by 1.5-2 orders of magnitude. 
As calculations of the thermal conductivity of a dispersed system with coated spherical 
particles have shown [2], in this case, the screening action of the coating is not great and 
it can be neglected. In fluidlike polymer compositions, separate particles as well as floc- 
cules, consisting of several particles, can form isolated inclusions. This is due to 
aggregation processes, which occur for sufficiently high specific surface of the powder. 
Usually, chains consisting of several particles are formed with aggregation. 

In a number of works [3-5], the formation of elongated aggregates is explained by the 
fact that the potential barrier, which must be overcome by the particles in order to connect 
to an ellipsoid, is lower along the long axis of the ellipsoid than along the short axis. As 
is well known, with the formation of aggregates, aside from the change in the polydispersity 
of the inclusions, one other factor appears: the volume fraction of particles in the aggregate 
is greater than the average volume fraction of the dispersed phase. The effect of this factor 
on the dielectric permeability of the composition with spherical aggregates was analyzed in 
[6], where the aggregate was viewed as a system with a higher concentration of the dispersed 
phase. As shown in [6], this effect is significant only when the volume concentration of the 
dispersed phase exceeds 25%. For lower concentrations of the dispersed phase, the aggregate 
can be viewed approximately as a particle with a thermal conductivity of the order of the 
thermal conductivity of a metal. 
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